

On Some Properties of Quadratic APN Functions of a Special Form

Introduction
Some APN known

Irene Villa

University of Bergen (Norway)

Cryptography

\# -1

On Some
Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction
Some APN known results
$L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$
Necessary and Sufficient
Conditions
On $x^{9}+L\left(x^{3}\right)$

Cryptography

$>$ Block ciphers

Introduction

Some APN known results

Necessary and Sufficient Conditions
On $x^{9}+L\left(x^{3}\right)$

Cryptography	$\overrightarrow{\\|} \underset{\\|}{\infty}$
> Block ciphers	
$>$ S-Boxes	\%
$》$ APN functions	optimal resistance against differential attack

Properties of Quadratic APN Functions of a Special Form

Introduction
Some APN known

Definitions

$$
F: \mathbb{H}_{2 n} \rightarrow \mathbb{H}_{2^{n}}
$$

Some APN known results
$L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$
Necessary and Sufficient
Conditions
On $x^{9}+L\left(x^{3}\right)$

Definitions

$$
F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}
$$

unique Univariate Polynomial Representation

$$
F(x)=\sum_{i=0}^{2^{n}-1} \delta_{i} x^{i}, \quad \delta_{i} \in \mathbb{F}_{2^{n}}
$$

Irene Villa

Introduction
Some APN known results

Definitions

$$
F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}
$$

unique Univariate Polynomial Representation

$$
F(x)=\sum_{i=0}^{2^{n}-1} \delta_{i} x^{i}, \quad \delta_{i} \in \mathbb{F}_{2^{n}}
$$

linear function $L(x)=\sum_{i=0}^{n-1} \delta_{i} x^{2^{i}}$
Irene Villa

Introduction
Some APN known results

Necessary and Sufficient Conditions

On $x^{9}+L\left(x^{3}\right)$

Definitions

$$
F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}
$$

unique Univariate Polynomial Representation

$$
\begin{gathered}
F(x)=\sum_{i=0}^{2^{n}-1} \delta_{i} x^{i}, \delta_{i} \in \mathbb{F}_{2^{n}} \\
\text { linear function } L(x)=\sum_{i=0}^{n-1} \delta_{i} x^{2^{i}} \\
\operatorname{Tr}_{n}(x)=x+x^{2}+x^{4}+\cdots+x^{2^{n-1}}
\end{gathered}
$$

Almost Perfect Nonlinear (APN)

$F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is APN if for any $a, b \in \mathbb{F}_{2^{n}} a \neq 0$, $F(x+a)-F(x)=b$ has at most 2 solutions

Almost Perfect Nonlinear (APN)

$F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is APN if for any $a, b \in \mathbb{F}_{2^{n}} a \neq 0$, $F(x+a)-F(x)=b$ has at most 2 solutions

CCZ-equivalence relation

$F_{1}, F_{2}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ are CCZ-equivalent $\left(F_{1} \stackrel{\mathrm{CCZ}}{\sim} F_{2}\right)$ if $\mathcal{L}\left(\Gamma_{F_{1}}\right)=\Gamma_{F_{2}}$, with \mathcal{L} affine permutation of $\mathbb{F}_{2^{n}}^{2}$ and $\Gamma_{F}=\left\{(x, F(x)): x \in \mathbb{F}_{2^{n}}\right\}($ graph of $F)$

Almost Perfect Nonlinear (APN)

$F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is APN if for any $a, b \in \mathbb{F}_{2^{n}} a \neq 0$, $F(x+a)-F(x)=b$ has at most 2 solutions

CCZ-equivalence relation

$F_{1}, F_{2}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ are CCZ-equivalent $\left(F_{1} \stackrel{\mathrm{CCZ}}{\sim} F_{2}\right)$ if $\mathcal{L}\left(\Gamma_{F_{1}}\right)=\Gamma_{F_{2}}$, with \mathcal{L} affine permutation of $\mathbb{F}_{2^{n}}^{2}$ and $\Gamma_{F}=\left\{(x, F(x)): x \in \mathbb{F}_{2^{n}}\right\}($ graph of $F)$

$$
F(x)=L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)
$$

L_{1}, L_{2} linear functions over $\mathbb{F}_{2^{n}}$

On $F(x)=L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$

On Some
Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results
$L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$
Necessary and Sufficient Conditions
On $x^{9}+L\left(x^{3}\right)$

On $F(x)=L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$
(Budaghyan, Carlet and Leander, 2009)

- n even, if $L_{1}(x)+L_{2}\left(x^{3}\right)$ is a permutation then $L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$ is APN,
- n odd, a weaker condition leads to APN functions

Introduction

Some APN known results

On $F(x)=L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$
(Budaghyan, Carlet and Leander, 2009)

- n even, if $L_{1}(x)+L_{2}\left(x^{3}\right)$ is a permutation then $L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$ is APN,
- n odd, a weaker condition leads to APN functions
- $x^{3}+a^{-1} \operatorname{Tr}_{n}\left(a^{3} x^{9}\right)$ is APN for any $a \neq 0, \quad\left(x^{3}+\operatorname{Tr}_{n}\left(x^{9}\right)\right)$

Irene Villa

Introduction
Some APN known results

Necessary and Sufficient Conditions

On $F(x)=L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$
(Budaghyan, Carlet and Leander, 2009)

- n even, if $L_{1}(x)+L_{2}\left(x^{3}\right)$ is a permutation then $L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$ is APN,
- n odd, a weaker condition leads to APN functions
- $x^{3}+a^{-1} \operatorname{Tr}_{n}\left(a^{3} x^{9}\right)$ is APN for any $a \neq 0, \quad\left(x^{3}+\operatorname{Tr}_{n}\left(x^{9}\right)\right)$
- $x^{3}+a^{-1} \operatorname{Tr}_{3}\left(a^{6} x^{18}+a^{12} x^{36}\right)$ is APN for any $a \neq 0$ and $3 \mid n$;
- $x^{3}+a^{-1} \operatorname{Tr}_{3}\left(a^{3} x^{9}+a^{6} x^{18}\right)$ is APN for any $a \neq 0$ and $3 \mid n$.

Irene Villa
ntroduction
Some APN known results

On $F(x)=L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$
(Budaghyan, Carlet and Leander, 2009)

- n even, if $L_{1}(x)+L_{2}\left(x^{3}\right)$ is a permutation then

$$
L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right) \text { is APN, }
$$

- n odd, a weaker condition leads to APN functions
- $x^{3}+a^{-1} \operatorname{Tr}_{n}\left(a^{3} x^{9}\right)$ is APN for any $a \neq 0, \quad\left(x^{3}+\operatorname{Tr}_{n}\left(x^{9}\right)\right)$
- $x^{3}+a^{-1} \operatorname{Tr}_{3}\left(a^{6} x^{18}+a^{12} x^{36}\right)$ is APN for any $a \neq 0$ and $3 \mid n$;
- $x^{3}+a^{-1} \operatorname{Tr}_{3}\left(a^{3} x^{9}+a^{6} x^{18}\right)$ is APN for any $a \neq 0$ and $3 \mid n$.
(Budaghyan, Carlet and Leander, 2009)

$$
n=8, x^{9}+\operatorname{Tr}_{n}\left(x^{3}\right) \text { is APN }
$$

(CCZ-ineq. to power functions and to $x^{3}+\operatorname{Tr}_{n}\left(x^{9}\right)$)
(Edel and Pott, 2008)
List of APN functions for $n=6,7,8$.

On Some
Properties of Quadratic APN Functions of a Special Form

```
Irene Villa
```


Introduction

Some APN known results

$$
L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)
$$

Necessary and Sufficient
Conditions
On $x^{9}+L\left(x^{3}\right)$
(Edel and Pott, 2008)
List of APN functions for $n=6,7,8$.
For $n=8$ listed 23 APN functions:

On Some
Properties of Quadratic APN Functions of a Special Form

```
Irene Villa
```


Introduction

Some APN known results
$L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$
Necessary and Sufficient
Conditions
On $x^{9}+L\left(x^{3}\right)$

(Edel and Pott, 2008)

List of APN functions for $n=6,7,8$.
For $n=8$ listed 23 APN functions:

- 17 are of the form $L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$ [1-13,15-17,19]: Irene Villa

Introduction

Some APN known results
$L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$
Necessary and Sufficient
Conditions
On $x^{9}+L\left(x^{3}\right)$
(Edel and Pott, 2008)
List of APN functions for $n=6,7,8$.
For $n=8$ listed 23 APN functions:

- 17 are of the form $L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$ [1-13,15-17,19]:
- 10 are affine equivalent to $x^{3}+L\left(x^{9}\right)$ [1,3,5-9,11-13],
- 5 are affine equivalent to $x^{9}+L\left(x^{3}\right)[2,4-6,19]$.

Irene Villa
(Edel and Pott, 2008) List of APN functions for $n=6,7,8$.
For $n=8$ listed 23 APN functions:

- 17 are of the form $L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$ [1-13,15-17,19]:
- 10 are affine equivalent to $x^{3}+L\left(x^{9}\right)$ [1,3,5-9,11-13],
- 5 are affine equivalent to $x^{9}+L\left(x^{3}\right)[2,4-6,19]$.
- 2 are of the form $L_{1}\left(x^{3}\right)+L_{2}\left(x^{5}\right)+L_{3}\left(x^{9}\right)[21,22]$.

Irene Villa

Some APN known
$L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$
Necessary and Sufficient
Conditions
(Edel and Pott, 2008) List of APN functions for $n=6,7,8$.
For $n=8$ listed 23 APN functions:

- 17 are of the form $L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$ [1-13,15-17,19]:
- 10 are affine equivalent to $x^{3}+L\left(x^{9}\right)$ [1,3,5-9,11-13],
- 5 are affine equivalent to $x^{9}+L\left(x^{3}\right)$ [2,4-6,19].
- 2 are of the form $L_{1}\left(x^{3}\right)+L_{2}\left(x^{5}\right)+L_{3}\left(x^{9}\right)$ [21,22].
- 3 are of the form $L_{1}\left(x^{3}\right)+L_{2}\left(x^{5}\right)+L_{3}\left(x^{9}\right)+L_{4}\left(x^{17}\right)$ [14,18,20].
(Edel and Pott, 2008) List of APN functions for $n=6,7,8$.
For $n=8$ listed 23 APN functions:
- 17 are of the form $L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$ [1-13,15-17,19]:
- 10 are affine equivalent to $x^{3}+L\left(x^{9}\right)$ [1,3,5-9,11-13],
- 5 are affine equivalent to $x^{9}+L\left(x^{3}\right)[2,4-6,19]$.
- 2 are of the form $L_{1}\left(x^{3}\right)+L_{2}\left(x^{5}\right)+L_{3}\left(x^{9}\right)$ [21,22].
- 3 are of the form $L_{1}\left(x^{3}\right)+L_{2}\left(x^{5}\right)+L_{3}\left(x^{9}\right)+L_{4}\left(x^{17}\right)$ [14, 18, 20].
- Last function x^{57} [23] is of algebraic degree 4.

Necessary Conditions

Lemma (1)

For n even, $k=\left(2^{n}-1\right) / 3$ and $\alpha \in \mathbb{F}_{2^{n}}^{*}$ primitive element if $F(x)=L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$ is APN then $F\left(\alpha^{j}\right) \neq 0$ for $j=0, \ldots, k-1$

Introduction

Some APN known results

Necessary and Sufficient Conditions

Necessary Conditions

Lemma (1)

For n even, $k=\left(2^{n}-1\right) / 3$ and $\alpha \in \mathbb{F}_{2^{n}}^{*}$ primitive element if $F(x)=L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$ is APN then $F\left(\alpha^{j}\right) \neq 0$ for $j=0, \ldots, k-1$

Lemma (2)

For n multiple of 6 , if $L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$ is APN then for any $a, \beta \neq 0$ with $\operatorname{Tr}_{3}(\beta)=0 L_{1}\left(a^{3} \beta\right) \neq 0$

Necessary Conditions

Lemma (1)

For n even, $k=\left(2^{n}-1\right) / 3$ and $\alpha \in \mathbb{F}_{2^{n}}^{*}$ primitive element if $F(x)=L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$ is APN then $F\left(\alpha^{j}\right) \neq 0$ for $j=0, \ldots, k-1$

Lemma (2)

For n multiple of 6 , if $L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$ is APN then for any $a, \beta \neq 0$ with $\operatorname{Tr}_{3}(\beta)=0 L_{1}\left(a^{3} \beta\right) \neq 0$

Proposition

If $L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$ is $A P N$, then the linear function $L_{3}(x)=L_{1}\left(x^{2}+x\right)+L_{2}\left(x^{8}+x\right)$ is a 2-to-1 map satisfying $L_{3}(x)=0$ if and only if $x=0,1$

Necessary and Sufficient Conditions

Lemma (3)

$L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$ is APN if and only if

- for any $a \neq 0$ and $x \neq 0,1$

$$
L_{1}\left(a^{2}\left(x^{2}+x\right)\right)+L_{2}\left(a^{9}\left(x^{8}+x\right)\right) \neq 0
$$

or equivalently

- for any $a, y \neq 0$ with $\operatorname{Tr}_{n}(y)=0$ $L_{1}\left(a^{3} y\right)+L_{2}\left(a^{9}\left(y^{4}+y^{2}+y\right)\right) \neq 0$

On Some
Properties of
Quadratic APN
Functions of a
Special Form

Introduction

Some APN known results

Necessary and Sufficient Conditions

Necessary and Sufficient Conditions

Lemma (3)

$L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$ is APN if and only if

- for any $a \neq 0$ and $x \neq 0,1$

$$
L_{1}\left(a^{2}\left(x^{2}+x\right)\right)+L_{2}\left(a^{9}\left(x^{8}+x\right)\right) \neq 0
$$

or equivalently

- for any $a, y \neq 0$ with $\operatorname{Tr}_{n}(y)=0$

$$
L_{1}\left(a^{3} y\right)+L_{2}\left(a^{9}\left(y^{4}+y^{2}+y\right)\right) \neq 0
$$

Lemma (4)

$L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$ is APN if and only if for any a $\neq 0$ there exists one and only one $\lambda \neq 0$ such that

$$
\operatorname{Tr}_{n}\left(\lambda L_{1}\left(a x^{2}+a^{2} x\right)+\lambda L_{2}\left(a x^{8}+a^{8} x\right)\right) \equiv 0
$$

Necessary and Sufficient Conditions

Lemma (5)

$L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$ is APN if and only if for any $a, y \neq 0$ with $\operatorname{Tr}_{n}(y)=0$, if it exists $t \in \mathbb{F}_{2^{n}}$ satisfying $\operatorname{Tr}_{n}(t)=0$ and $L_{1}\left(a^{3} y\right)=L_{2}\left(a^{9} y^{3} t\right)$ then $L_{2}\left(a^{9}\left(y^{4}+t y^{3}+y^{2}+y\right)\right) \neq 0$

Necessary and Sufficient Conditions

Lemma (5)

$L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$ is APN if and only if for any $a, y \neq 0$ with $\operatorname{Tr}_{n}(y)=0$, if it exists $t \in \mathbb{F}_{2^{n}}$ satisfying $\operatorname{Tr}_{n}(t)=0$ and $L_{1}\left(a^{3} y\right)=L_{2}\left(a^{9} y^{3} t\right)$ then $L_{2}\left(a^{9}\left(y^{4}+t y^{3}+y^{2}+y\right)\right) \neq 0$

Corollary

If for any $a, y \neq 0 \operatorname{Tr}_{n}(y)=0$ the equation
$L_{1}\left(a^{3} y\right)+L_{2}\left(a^{9} y^{3} t\right)=0$ is satisfied only for t with $\operatorname{Tr}_{n}(t)=1$, then $L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$ is APN

Properties of
Quadratic APN Functions of a Special Form

Irene Villa

On $x^{9}+L\left(x^{3}\right)$

On Some
Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results
$L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$
Necessary and Sufficient Conditions

On $x^{9}+L\left(x^{3}\right)$

On $x^{9}+L\left(x^{3}\right)$

Lemma (6)
 If $3 \mid n$ then $x^{9}+\operatorname{Tr}_{n}\left(x^{3}\right)$ is not $A P N$

Introduction

Some APN known results
$L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$
Necessary and Sufficient Conditions
On $x^{9}+L\left(x^{3}\right)$

On $x^{9}+L\left(x^{3}\right)$

Lemma (6)
 If $3 \mid n$ then $x^{9}+\operatorname{Tr}_{n}\left(x^{3}\right)$ is not APN
 Using Lemma (5) (computational results done with MAGMA)

Introduction

Some APN known results

Necessary and Sufficient Conditions
On $x^{9}+L\left(x^{3}\right)$

On $x^{9}+L\left(x^{3}\right)$

Lemma (6)

If $3 \mid n$ then $x^{9}+\operatorname{Tr}_{n}\left(x^{3}\right)$ is not APN
Irene Villa
Using Lemma (5) (computational results done with MAGMA)
$\Rightarrow x^{9}+\operatorname{Tr}_{n}\left(x^{3}\right)$ is APN only for $n=4,5,8$ (checked until $n=200$);

Introduction

Some APN known results

Necessary and Sufficient Conditions
On $x^{9}+L\left(x^{3}\right)$

On $x^{9}+L\left(x^{3}\right)$

Lemma (6)

If $3 \mid n$ then $x^{9}+\operatorname{Tr}_{n}\left(x^{3}\right)$ is not APN
Using Lemma (5) (computational results done with MAGMA)
$\Rightarrow x^{9}+\operatorname{Tr}_{n}\left(x^{3}\right)$ is APN only for $n=4,5,8$ (checked until $n=200$);
\Rightarrow list of APN of the form $x^{9}+L\left(x^{3}\right)$ (representatives for CCZ-equivalence relation) for $n=4, \ldots, 10$

On $x^{9}+L\left(x^{3}\right)$

CCZ-equivalent classes, with $\alpha \in \mathbb{F}_{2^{n}}^{*}$ primitive element

n	\sharp	Representative for $L(x)$
4	1	0
5	2	$0, \quad \operatorname{Tr}_{n}(x)$
6	2	$\alpha^{44} x+\alpha x^{2}, \alpha^{23} x+x^{4}$
7	1	0
8	8	$0, \operatorname{Tr}_{n}(x), x^{2}+x^{16}$,
		$x^{8}+x^{128}, x^{4}+\alpha^{85} x^{8}+x^{16}$,
		$\alpha^{60} x+\alpha^{200} x^{2}+\alpha^{242} x^{4}+\alpha^{190} x^{8}+\alpha x^{16}$, $\alpha^{228} x^{64}+\alpha^{107} x^{32}+\alpha^{80} x^{8}+\alpha^{137} x^{2}+\alpha^{189} x$, $\alpha^{25} x^{128}+\alpha^{194} x^{4}+\alpha^{146} x^{2}$
9	0	-
10	2	$0, \alpha^{1021} x+\alpha^{1022} x^{2}+\alpha x^{4}$

On Some
Properties of
Quadratic APN
Functions of a
Special Form

Fact

If $3 \nmid n$ then $L(x)=0$ generates the APN function x^{9}.

On Some
Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results
$L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$
Necessary and Sufficient Conditions
On $x^{9}+L\left(x^{3}\right)$

Fact

If $3 \nmid n$ then $L(x)=0$ generates the APN function x^{9}.

Proposition

If n is even then for any $a \neq 0$ not a cube

$$
L(x)=a x^{4}+a^{-1} x^{2}+a^{-2} x
$$

generates an APN function $x^{9}+L\left(x^{3}\right)$ linear equivalent to x^{3}.

On Some
Properties of Quadratic APN Functions of a Special Form Irene Villa

Introduction
Some APN known results
$L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$
Necessary and Sufficient Conditions
On $x^{9}+L\left(x^{3}\right)$

Comparison with Edel-Pott list ($n=6$ and $n=8$) :

Introduction

Some APN known results

$L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$

Necessary and Sufficient Conditions

On $x^{9}+L\left(x^{3}\right)$

Comparison with Edel-Pott list ($n=6$ and $n=8$) :
[$n=6$]

1. $L(x)=\alpha^{44} x+\alpha x^{2}$,

$$
x^{9}+L\left(x^{3}\right) \stackrel{C C Z}{\sim} \text { no. } 2\left(x^{3}+\alpha^{-1} \operatorname{Tr}_{n}\left(\alpha^{3} x^{9}\right)\right),
$$

2. $L(x)=\alpha^{23} x+x^{4}$,

$$
x^{9}+L\left(x^{3}\right) \stackrel{c \subset Z}{\sim} \text { no. } 1\left(x^{3}\right)
$$

On Some
Properties of Quadratic APN Functions of a Special Form
Irene Villa

Introduction

Some APN known results

Necessary and Sufficient Conditions
On $x^{9}+L\left(x^{3}\right)$

$$
\begin{aligned}
& \text { [} n=8 \text {] } \\
& \text { 1. } L(x)=0, \quad \text { no. } 2\left(x^{9}\right) \text {, } \\
& \text { 2. } L(x)=\operatorname{Tr}_{n}(x) \text {, no. } 4\left(x^{9}+\operatorname{Tr}_{n}\left(x^{3}\right)\right) \text {, } \\
& \text { 3. } L(x)=x^{2}+x^{16} \text {, } \\
& x^{9}+L\left(x^{3}\right) \stackrel{C \subset 工}{\sim} \text { no. } 3\left(x^{3}+\operatorname{Tr}_{n}\left(x^{9}\right)\right), \\
& \text { 4. } L(x)=x^{8}+x^{128} \text {, } \\
& x^{9}+L\left(x^{3}\right) \stackrel{c C Z}{\sim} \text { no. } 1\left(x^{3}\right), \\
& \text { 5. } L(x)=x^{4}+\alpha^{85} x^{8}+x^{16} \text {, } \\
& x^{9}+L\left(x^{3}\right) \stackrel{C C 工}{\sim} \text { no. } 6 \text {, } \\
& \text { 6. } L(x)=\alpha^{60} x+\alpha^{200} x^{2}+\alpha^{242} x^{4}+\alpha^{190} x^{8}+\alpha x^{16} \text {, } \\
& x^{9}+L\left(x^{3}\right) \stackrel{C C 工}{\sim} \text { no. } 9, \\
& \text { 7. } L(x)=\alpha^{228} x^{64}+\alpha^{107} x^{32}+\alpha^{80} x^{8}+\alpha^{137} x^{2}+\alpha^{189} x \text {, } \\
& x^{9}+L\left(x^{3}\right) \stackrel{C C Z}{\sim} \text { no. } 5 \text {, } \\
& \text { 8. } L(x)=\alpha^{25} x^{128}+\alpha^{194} x^{4}+\alpha^{146} x^{2} \text {, } \\
& x^{9}+L\left(x^{3}\right) \stackrel{C C Z}{\sim} \text { no. } 19 .
\end{aligned}
$$

On Some
Properties of
Quadratic APN
Functions of a Special Form

Thank you for your attention

Introduction

Some APN known results
$L_{1}\left(x^{3}\right)+L_{2}\left(x^{9}\right)$
Necessary and Sufficient Conditions
On $x^{9}+L\left(x^{3}\right)$

