

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

Necessary and Sufficient Conditions

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

University of Bergen (Norway)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Cryptography

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

Necessary and Sufficient Conditions

・ロト・日本・日本・日本・日本・日本

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$F:\mathbb{F}_{2^n}\to\mathbb{F}_{2^n}$$

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

Necessary and Sufficient Conditions

$$F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$$

unique Univariate Polynomial Representation

$$F(x) = \sum_{i=0}^{2^n-1} \delta_i x^i, \ \delta_i \in \mathbb{F}_{2^n}$$

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$ Necessary and Sufficient

On $x^{9} + L(x^{3})$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで

$$F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$$

unique Univariate Polynomial Representation

$$F(x) = \sum_{i=0}^{2^n-1} \delta_i x^i, \ \delta_i \in \mathbb{F}_{2^n}$$

linear function
$$L(x) = \sum_{i=0}^{n-1} \delta_i x^{2^i}$$

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

 $2n x^9 + I(x^3)$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

$$F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$$

unique Univariate Polynomial Representation

$$F(x) = \sum_{i=0}^{2^n-1} \delta_i x^i, \ \delta_i \in \mathbb{F}_{2^n}$$

linear function
$$L(x) = \sum_{i=0}^{n-1} \delta_i x^{2^i}$$

$$Tr_n(x) = x + x^2 + x^4 + \dots + x^{2^{n-1}}$$

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$ Necessary and Sufficient

 $Dn x^9 + L(x^3)$

うしん 同一人用 人用 人名 マート

Almost Perfect Nonlinear (APN)

 $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is APN if for any $a, b \in \mathbb{F}_{2^n}$ $a \neq 0$, F(x + a) - F(x) = b has at most 2 solutions

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

Necessary and Sufficient Conditions

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Almost Perfect Nonlinear (APN)

 $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is APN if for any $a, b \in \mathbb{F}_{2^n}$ $a \neq 0$, F(x + a) - F(x) = b has at most 2 solutions

CCZ-equivalence relation

 $F_1, F_2 : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ are CCZ-equivalent $(F_1 \overset{\text{CCZ}}{\sim} F_2)$ if $\mathcal{L}(\Gamma_{F_1}) = \Gamma_{F_2}$, with \mathcal{L} affine permutation of $\mathbb{F}_{2^n}^2$ and $\Gamma_F = \{(x, F(x)) : x \in \mathbb{F}_{2^n}\}$ (graph of F)

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

Conditions

・ロト・西ト・山田・山田・山口・

Almost Perfect Nonlinear (APN)

 $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is APN if for any $a, b \in \mathbb{F}_{2^n}$ $a \neq 0$, F(x + a) - F(x) = b has at most 2 solutions

CCZ-equivalence relation

$$F_1, F_2 : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$$
 are CCZ-equivalent $(F_1 \overset{\text{CCZ}}{\sim} F_2)$ if $\mathcal{L}(\Gamma_{F_1}) = \Gamma_{F_2}$, with \mathcal{L} affine permutation of $\mathbb{F}_{2^n}^2$ and $\Gamma_F = \{(x, F(x)) : x \in \mathbb{F}_{2^n}\}$ (graph of F)

$$F(x) = L_1(x^3) + L_2(x^9)$$

 L_1, L_2 linear functions over \mathbb{F}_{2^n}

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

Necessary and Sufficien Conditions

On $F(x) = L_1(x^3) + L_2(x^9)$

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

Necessary and Sufficient Conditions

(Budaghyan, Carlet and Leander, 2009)

- *n* even, if $L_1(x) + L_2(x^3)$ is a permutation then $L_1(x^3) + L_2(x^9)$ is APN,
- n odd, a weaker condition leads to APN functions

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

Necessary and Sufficient Conditions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(Budaghyan, Carlet and Leander, 2009)

- *n* even, if $L_1(x) + L_2(x^3)$ is a permutation then $L_1(x^3) + L_2(x^9)$ is APN,
- n odd, a weaker condition leads to APN functions

• $x^3 + a^{-1}Tr_n(a^3x^9)$ is APN for any $a \neq 0$, $(x^3 + Tr_n(x^9))$

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

Conditions

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

(Budaghyan, Carlet and Leander, 2009)

- *n* even, if $L_1(x) + L_2(x^3)$ is a permutation then $L_1(x^3) + L_2(x^9)$ is APN,
- n odd, a weaker condition leads to APN functions

• $x^3 + a^{-1}Tr_n(a^3x^9)$ is APN for any $a \neq 0$, $(x^3 + Tr_n(x^9))$ • $x^3 + a^{-1}Tr_3(a^6x^{18} + a^{12}x^{36})$ is APN for any $a \neq 0$ and 3|n; • $x^3 + a^{-1}Tr_3(a^3x^9 + a^6x^{18})$ is APN for any $a \neq 0$ and 3|n.

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$ Necessary and Sufficient Conditions

On $x^{9} + L(x^{3})$

イロト (四) (日) (日) (日) (日) (日)

(Budaghyan, Carlet and Leander, 2009)

- *n* even, if $L_1(x) + L_2(x^3)$ is a permutation then $L_1(x^3) + L_2(x^9)$ is APN,
- n odd, a weaker condition leads to APN functions

•
$$x^3 + a^{-1}Tr_n(a^3x^9)$$
 is APN for any $a \neq 0$, $(x^3 + Tr_n(x^9))$
• $x^3 + a^{-1}Tr_3(a^6x^{18} + a^{12}x^{36})$ is APN for any $a \neq 0$ and $3|n;$
• $x^3 + a^{-1}Tr_3(a^3x^9 + a^6x^{18})$ is APN for any $a \neq 0$ and $3|n.$

(Budaghyan, Carlet and Leander, 2009)

n = 8, $x^9 + Tr_n(x^3)$ is APN (CCZ-ineq. to power functions and to $x^3 + Tr_n(x^9)$)

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$ Necessary and Sufficient Conditions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(Edel and Pott, 2008) List of APN functions for n=6,7,8.

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

Conditions On $x^9 \pm I(x^3)$

・ロト・日本・日本・日本・日本・日本

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

Conditions $2n x^9 + 1(x^3)$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

▶ 17 are of the form $L_1(x^3) + L_2(x^9)$ [1-13,15-17,19]:

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

Conditions $2n e^{9} + I(e^{3})$

うしん 同一人用 人用 人名 マート

- ▶ 17 are of the form $L_1(x^3) + L_2(x^9)$ [1-13,15-17,19]:
 - ▶ 10 are affine equivalent to $x^3 + L(x^9)$ [1,3,5-9,11-13],
 - ▶ 5 are affine equivalent to $x^9 + L(x^3)$ [2,4-6,19].

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

Necessary and Sufficier Conditions

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

- ▶ 17 are of the form $L_1(x^3) + L_2(x^9)$ [1-13,15-17,19]:
 - ▶ 10 are affine equivalent to $x^3 + L(x^9)$ [1,3,5-9,11-13],
 - ▶ 5 are affine equivalent to $x^9 + L(x^3)$ [2,4-6,19].
- ▶ 2 are of the form $L_1(x^3) + L_2(x^5) + L_3(x^9)$ [21,22].

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

Necessary and Sufficier Conditions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ▶ 17 are of the form $L_1(x^3) + L_2(x^9)$ [1-13,15-17,19]:
 - ▶ 10 are affine equivalent to $x^3 + L(x^9)$ [1,3,5-9,11-13],
 - ▶ 5 are affine equivalent to $x^9 + L(x^3)$ [2,4-6,19].
- ▶ 2 are of the form $L_1(x^3) + L_2(x^5) + L_3(x^9)$ [21,22].
- ▶ 3 are of the form $L_1(x^3) + L_2(x^5) + L_3(x^9) + L_4(x^{17})$ [14,18,20].

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

Necessary and Sufficier Conditions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ▶ 17 are of the form $L_1(x^3) + L_2(x^9)$ [1-13,15-17,19]:
 - ▶ 10 are affine equivalent to $x^3 + L(x^9)$ [1,3,5-9,11-13],
 - ▶ 5 are affine equivalent to $x^9 + L(x^3)$ [2,4-6,19].
- ▶ 2 are of the form $L_1(x^3) + L_2(x^5) + L_3(x^9)$ [21,22].
- ▶ 3 are of the form $L_1(x^3) + L_2(x^5) + L_3(x^9) + L_4(x^{17})$ [14,18,20].
- Last function x^{57} [23] is of algebraic degree 4.

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

```
L_1(x^3) + L_2(x^9)
```

Necessary and Sufficier Conditions On $x^9 \pm l(x^3)$

Necessary Conditions

Lemma (1)

For *n* even, $k = (2^n - 1)/3$ and $\alpha \in \mathbb{F}_{2^n}^*$ primitive element if $F(x) = L_1(x^3) + L_2(x^9)$ is APN then $F(\alpha^j) \neq 0$ for j = 0, ..., k - 1

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

Necessary and Sufficient Conditions

 $\operatorname{On} x^9 + L(x^3)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Necessary Conditions

Lemma (1)

For *n* even,
$$k = (2^n - 1)/3$$
 and $\alpha \in \mathbb{F}_{2^n}^*$ primitive element
if $F(x) = L_1(x^3) + L_2(x^9)$ is APN then $F(\alpha^j) \neq 0$ for
 $j = 0, ..., k - 1$

Lemma (2)

For n multiple of 6, if $L_1(x^3) + L_2(x^9)$ is APN then for any $a, \beta \neq 0$ with $Tr_3(\beta) = 0$ $L_1(a^3\beta) \neq 0$

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

Necessary and Sufficient Conditions

On $x^{9} + L(x^{3})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Necessary Conditions

Lemma (1)

For *n* even,
$$k = (2^n - 1)/3$$
 and $\alpha \in \mathbb{F}_{2^n}^*$ primitive element
if $F(x) = L_1(x^3) + L_2(x^9)$ is APN then $F(\alpha^j) \neq 0$ for
 $j = 0, ..., k - 1$

Lemma (2)

For n multiple of 6, if $L_1(x^3) + L_2(x^9)$ is APN then for any $a, \beta \neq 0$ with $Tr_3(\beta) = 0$ $L_1(a^3\beta) \neq 0$

Proposition

If $L_1(x^3) + L_2(x^9)$ is APN, then the linear function $L_3(x) = L_1(x^2 + x) + L_2(x^8 + x)$ is a 2-to-1 map satisfying $L_3(x) = 0$ if and only if x = 0, 1

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

Necessary and Sufficient Conditions

Lemma (3)

 $L_1(x^3) + L_2(x^9)$ is APN if and only if

For any a ≠ 0 and x ≠ 0, 1 L₁(a²(x² + x)) + L₂(a⁹(x⁸ + x)) ≠ 0

or equivalently

▶ for any
$$a, y \neq 0$$
 with $Tr_n(y) = 0$
 $L_1(a^3y) + L_2(a^9(y^4 + y^2 + y)) \neq 0$

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

Necessary and Sufficient Conditions

 $\operatorname{On} x^9 + L(x^3)$

・ロト・西ト・西ト・西ト・日・ シック

Lemma (3)

 $L_1(x^3) + L_2(x^9)$ is APN if and only if

For any a ≠ 0 and x ≠ 0, 1 L₁(a²(x² + x)) + L₂(a⁹(x⁸ + x)) ≠ 0

or equivalently

► for any
$$a, y \neq 0$$
 with $Tr_n(y) = 0$
 $L_1(a^3y) + L_2(a^9(y^4 + y^2 + y)) \neq 0$

Lemma (4)

 $L_1(x^3) + L_2(x^9)$ is APN if and only if for any $a \neq 0$ there exists one and only one $\lambda \neq 0$ such that $Tr_n(\lambda L_1(ax^2 + a^2x) + \lambda L_2(ax^8 + a^8x)) \equiv 0$

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

$L_1(x^3) + L_2(x^9)$

Necessary and Sufficient Conditions

 $\operatorname{Dn} x^9 + L(x^3)$

・ロト・西ト・ヨト・ヨー シック

Lemma (5)

 $L_1(x^3) + L_2(x^9)$ is APN if and only if for any $a, y \neq 0$ with $Tr_n(y) = 0$, if it exists $t \in \mathbb{F}_{2^n}$ satisfying $Tr_n(t) = 0$ and $L_1(a^3y) = L_2(a^9y^3t)$ then $L_2(a^9(y^4 + ty^3 + y^2 + y)) \neq 0$

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

Necessary and Sufficient Conditions

 $\operatorname{Dn} x^9 + L(x^3)$

・ロト・西ト・ヨト・日下 ひゃぐ

Lemma (5)

 $L_1(x^3) + L_2(x^9)$ is APN if and only if for any $a, y \neq 0$ with $Tr_n(y) = 0$, if it exists $t \in \mathbb{F}_{2^n}$ satisfying $Tr_n(t) = 0$ and $L_1(a^3y) = L_2(a^9y^3t)$ then $L_2(a^9(y^4 + ty^3 + y^2 + y)) \neq 0$

Corollary

If for any $a, y \neq 0$ $Tr_n(y) = 0$ the equation $L_1(a^3y) + L_2(a^9y^3t) = 0$ is satisfied only for t with $Tr_n(t) = 1$, then $L_1(x^3) + L_2(x^9)$ is APN

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

Necessary and Sufficient Conditions

・ロト・西ト・山田・山田・山口・

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

Necessary and Sufficient Conditions

On $x^9 + L(x^3)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Lemma (6)

If 3|n then $x^9 + Tr_n(x^3)$ is not APN

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

Necessary and Sufficient Conditions

On $x^9 + L(x^3)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Lemma (6)

If 3|n then $x^9 + Tr_n(x^3)$ is not APN

Using Lemma (5) (computational results done with MAGMA) $% \left({{{\rm{S}}}_{{\rm{A}}}} \right)$

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

Necessary and Sufficient Conditions

On $x^9 + L(x^3)$

・ロト・西ト・田・・田・・日・ シック

Lemma (6)

If 3|n then $x^9 + Tr_n(x^3)$ is not APN

Using Lemma (5) (computational results done with MAGMA) $% \left({{{\rm{AGMA}}} \right)$

$$\Rightarrow x^9 + Tr_n(x^3)$$
 is APN only for $n = 4, 5, 8$ (checked untin=200);

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

ntroduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

Necessary and Sufficient Conditions

On $x^9 + L(x^3)$

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Lemma (6)

If 3|n then $x^9 + Tr_n(x^3)$ is not APN

Using Lemma (5) (computational results done with MAGMA)

- $\Rightarrow x^9 + Tr_n(x^3)$ is APN only for n = 4, 5, 8 (checked until n=200);
- ⇒ list of APN of the form $x^9 + L(x^3)$ (representatives for CCZ-equivalence relation) for n = 4, ..., 10

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

Conditions On $x^9 + L(x^3)$

・ロト・西ト・田・・田・・日・ シック

$c c r 2^{m}$ primitive element		
п	#	Representative for $L(x)$
4	1	0
5	2	$0, Tr_n(x)$
6	2	$\alpha^{44}x + \alpha x^2, \alpha^{23}x + x^4$
7	1	0
8	8	0, $Tr_n(x)$, $x^2 + x^{16}$,
		$x^8 + x^{128}$, $x^4 + \alpha^{85}x^8 + x^{16}$,
		$\alpha^{60}x + \alpha^{200}x^2 + \alpha^{242}x^4 + \alpha^{190}x^8 + \alpha x^{16},$
		$\alpha^{228}x^{64} + \alpha^{107}x^{32} + \alpha^{80}x^8 + \alpha^{137}x^2 + \alpha^{189}x,$
		$\alpha^{25}x^{128} + \alpha^{194}x^4 + \alpha^{146}x^2$
9	0	-
10	2	$0, \alpha^{1021}x + \alpha^{1022}x^2 + \alpha x^4$

CC7-equivalent classes with $\alpha \in \mathbb{F}_{2n}^*$ primitive element

・ロト・日本・エート・エー・ショー ショー

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

On $x^{9} + L(x^{3})$

Fact

If $3 \nmid n$ then L(x) = 0 generates the APN function x^9 .

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

Necessary and Sufficient Conditions

On $x^9 + L(x^3)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Fact

If $3 \nmid n$ then L(x) = 0 generates the APN function x^9 .

Proposition

If n is even then for any $a \neq 0$ not a cube

$$L(x) = ax^4 + a^{-1}x^2 + a^{-2}x$$

generates an APN function $x^9 + L(x^3)$ linear equivalent to x^3 .

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

On $x^9 + L(x^3)$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

Necessary and Sufficient Conditions

On $x^9 + L(x^3)$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

Comparison with Edel-Pott list (n = 6 and n = 8):

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

Necessary and Sufficient Conditions

On $x^9 + L(x^3)$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

Comparison with Edel-Pott list (n = 6 and n = 8): [n = 6]

1.
$$L(x) = \alpha^{44}x + \alpha x^2$$
,
 $x^9 + L(x^3) \stackrel{\text{CCZ}}{\sim} \text{no. 2} (x^3 + \alpha^{-1} Tr_n(\alpha^3 x^9))$,
2. $L(x) = \alpha^{23}x + x^4$,
 $x^9 + L(x^3) \stackrel{\text{CCZ}}{\sim} \text{no. 1} (x^3)$.

[n = 8]1. L(x) = 0. no. 2 (x^9) , 2. $L(x) = Tr_n(x)$, no. 4 $(x^9 + Tr_n(x^3))$. On Some Properties of 3. $L(x) = x^2 + x^{16}$. Quadratic APN Functions of a $x^{9} + L(x^{3}) \stackrel{\text{CCZ}}{\sim}$ no. 3 $(x^{3} + Tr_{n}(x^{9}))$ Special Form 4. $L(x) = x^8 + x^{128}$. Irene Villa $x^{9} + L(x^{3}) \stackrel{\text{CCZ}}{\sim}$ no. 1 (x³), 5. $L(x) = x^4 + \alpha^{85}x^8 + x^{16}$ $x^{9} + L(x^{3}) \stackrel{ccz}{\sim} no. 6.$ 6. $L(x) = \alpha^{60}x + \alpha^{200}x^2 + \alpha^{242}x^4 + \alpha^{190}x^8 + \alpha x^{16}$ On $x^{9} + L(x^{3})$ $x^{9} + L(x^{3}) \stackrel{CCZ}{\sim} no. 9.$ 7. $L(x) = \alpha^{228} x^{64} + \alpha^{107} x^{32} + \alpha^{80} x^8 + \alpha^{137} x^2 + \alpha^{189} x.$ $x^{9} + L(x^{3}) \stackrel{ccz}{\sim} no. 5.$ 8. $L(x) = \alpha^{25}x^{128} + \alpha^{194}x^4 + \alpha^{146}x^2$. $x^9 + L(x^3) \stackrel{ccz}{\sim}$ no. 19.

▲ロト ▲暦 ト ▲ 臣 ト ▲ 臣 - の Q ()~

On Some Properties of Quadratic APN Functions of a Special Form

Irene Villa

Introduction

Some APN known results

 $L_1(x^3) + L_2(x^9)$

Necessary and Sufficient Conditions

On $x^9 + L(x^3)$

Thank you for your attention